Connected graphs with maximal Q-index: The one-dominating-vertex case
نویسندگان
چکیده
منابع مشابه
Vertex-dominating cycles in 2-connected bipartite graphs
A cycle C is a vertex-dominating cycle if every vertex is adjacent to some vertex of C. Bondy and Fan [4] showed that if G is a 2-connected graph with δ(G) ≥ 13 (|V (G)| − 4), then G has a vertex-dominating cycle. In this paper, we prove that if G is a 2-connected bipartite graph with partite sets V1 and V2 such that δ(G) ≥ 1 3 (max{|V1|, |V2|}+ 1), then G has a vertex-dominating cycle.
متن کاملThe maximal total irregularity of some connected graphs
The total irregularity of a graph G is defined as 〖irr〗_t (G)=1/2 ∑_(u,v∈V(G))▒〖|d_u-d_v |〗, where d_u denotes the degree of a vertex u∈V(G). In this paper by using the Gini index, we obtain the ordering of the total irregularity index for some classes of connected graphs, with the same number of vertices.
متن کامل2-connected Graphs with Small 2-connected Dominating Sets
Let G be a 2-connected graph. A subset D of V (G) is a 2-connected dominating set if every vertex of G has a neighbor in D and D induces a 2-connected subgraph. Let γ2(G) denote the minimum size of a 2-connected dominating set of G. Let δ(G) be the minimum degree of G. For an n-vertex graph G, we prove that γ2(G) ≤ n ln δ(G) δ(G) (1 + oδ(1)) where oδ(1) denotes a function that tends to 0 as δ →...
متن کاملVertex Covers and Connected Vertex Covers in 3-connected Graphs
A vertex cover of a graph G=(V,E) is a subset N of V such that each element of E is incident upon some element of N, where V and E are the sets of vertices and of edges of G, respectively. A connected vertex cover of a graph G is a vertex cover of G such that the subgraph G[N] induced by N of G is connected. The minimum vertex cover problem (VCP) is the problem of finding a vertex cover of mini...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2011
ISSN: 0024-3795
DOI: 10.1016/j.laa.2011.02.018